<<
>>

АТФ и фосфорилирование белков

Выше были представлены ранние, связанные с мембраной этапы процесса секреции гистамина и обмена арахидоновой кислоты. О более поздних этапах известно относительно мало. Для секреции гистамина необходимо накопление внутриклеточного АТФ.

При стимуляции тучных клеток поперечной сшивкой Fc-e- рецепторов в присутствии глюкозы не происходит увеличения потребления кислорода и аноксия не полностью подавляет вызванную таким образом секрецию гистамина. Ингибиторы окислительного фосфорилирования, такие как цианид и антимицин А, лишь частично тормозят антигениндуцированную секрецию гистамина. Тучные клетки относительно бедны митохондриями, и окислительное фосфорилирование, по-видимому, не является абсолютным условием секреции гистамина.

Однако гликолиз в тучных клетках протекает активно, и удаление глюкозы вызывает частичное торможение секреции, опосредованной Fc-e-рецепторами. Сочетание подавления окислительного фосфорилирования и удаления глюкозы полностью отменяет секрецию гистамина, а восстановление гликолиза либо окислительного метаболизма частично восстанавливает секрецию. Эти данные интерпретируются как зависимость Fc-e-опосредованной секреции от АТФ, который может поставляться как в результате гликолиза, так и при окислительном фосфорилировании. Показано, что клетки, лишенные АТФ, неспособны секре- тировать гистамин, а стимуляция Fc-e-рецеп- торов приводит к потреблению внутриклеточного АТФ. Уровень АТФ тучных клеток снижается при стимуляции секреции гистамина. Конечно, АТФ необходим для обеспечения многих клеточных процессов, а не только для секреции. Как уже отмечалось, имеются данные о вовлечении в секрецию гистамина ряда киназ, использующих АТФ (цАМФ-зависимая киназа, киназа С, фосфоинозитидкиназы), и вполне вероятно также, что АТФазы участвуют в механизмах транспорта кальция в клетку. Фосфорилирование белков, таким образом,

представляется необходимой частью секреторных механизмов.

При стимуляции крысиных перитонеальных тучных клеток анти-IgE или кальциевым ионофором А23187 фосфорилируются некоторые мембранные белки. Более постоянно фосфорилируются белки с молекулярной массой 78 0о0, 68 000, 59000 и 42000 дальтон. Известно, что фосфорилирование играет главную роль в регуляции клеточных функций, поэтому возникает следующий вопрос: какие процессы фосфорилирования белков участвуют в стимуляции или down-регуляции секреции гистамина.

После стимуляции крысиных перитонеальных тучных клеток анти-IgE дегрануляция клеток наблюдается через 1 мин, а фосфорилирование белков с молекулярной массой 68 000, 59000 и 49 000 дальтон завершается в течение 30-45 с. Белок с молекулярной массой 78 000 дальтон фосфорилируется отсроченно: процесс начинается через 10 с после стимуляции и завершается через 1 мин. Некоторое дефосфорилирование белков с молекулярной массой 68 000, 59 000 и 42 000 дальтон отмечается после пика фосфорилирования. Белок с молекулярной массой 42000 дефосфорилируется почти полностью.

Белки с молекулярной массой 68 000, 59 000 и 42000 фосфорилируются также при стимуляции тучных клеток ионофором А23187. В данном случае как секреция гистамина, так и фосфорилирование белков частично зависят от внеклеточного кальция. Белок с молекулярной массой 78000 не фосфорилируется при стимуляции клеток ионофором А23187, а его дефосфорилирование происходит независимо от наличия кальция во внеклеточной среде.

Приведенные данные свидетельствуют в пользу предположения об участии фосфорилирования белков с молекулярной массой 68000, 59000 и 42000 в процессе активации тучных клеток. Это следует из временных параметров процессов и кальциевой зависимости. Напротив, белок с молекулярной массой 78 000, вероятно, участвует в down-регуляции секреции, поскольку пик его фосфорилирования приходится на окончание секреции, фосфорилирование осуществляется независимо от кальция и не наблюдается при стимуляции тучных клеток ионофором А23187. Кроме того, следует отметить, что после активации поперечным сшиванием Fc-e-рецепторов клетки становятся рефрактерными к стимулам (см. выше), однако при гистаминовой секреции, вызванной ионофором А23187, процесс инактивации не наблюдается. Эти факты свидетельствуют в пользу участия белка с молекулярной массой 78000 в инактивационном процессе. Подобные предположения интересны также в свете данных, показывающих, что хромогликат вызывает фосфорилирование белка с молекулярной массой 78 000 дальтон (см. главу 23).

<< | >>
Источник: Коллектив авторов. Руководство по иммунофармакологии: Пер. с англ./Под ред. Р84 М.М. Дейла, Дж. К. Формена.-М.: Медицина,1998. 1998

Еще по теме АТФ и фосфорилирование белков:

  1. О возможности контроля активности липокортина фосфорилированием
  2. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА ТРАНСПОРТНЫХ БЕЛКОВ
  3. Чрезмерное потребление белковой пищи
  4. Липокортиновое семейство белков: макрокортин, ренокортин и липомодулин
  5. Индукция синтеза глюкокортикоидами белкового ингибитора фосфолипазы А2
  6. ИЗМЕНЕНИЯ МОРФОЛОГИЧЕСКОГО И БЕЛКОВОГО СОСТАВА КРОВИ ПРИ АНАФИЛАКСИИ
  7. Редкие формы наследственных анемий, обусловленных нарушением структуры белков мембраны эритроцитов
  8. РОЛЬ ВЕЩЕСТВ ТИПА ПЕПТОНОВ. НАРУШЕНИЯ БЕЛКОВОГО ОБМЕНА ПРИ АНАФИЛАКСИИ
  9. 36.Противомикробные средства, угнетающие синтез белков клеточной стенки бактерий: пенициллины, цефалоспорины и ванкомици
  10. Содержание белков, жиров, углеводов, минеральных веществ и микроэлементов в различных пищевых продуктах. Основные пути их поступления в организм.Содержание белка в пищевых продуктах
  11. Заболевания сердечно-сосудистой системы. Метаболические нарушения
  12. Лечение
  13. Общая характеристика механизмов энергообразования
  14. Патогенез