<<
>>

Метаболизм фосфолипидов

Обмен фосфатидилинозитола

В последние годы повышенное внимание уделяется мембранным фосфолипидам тучных клеток, а также возможной роли их изменений при сопряжении Fc-e-рецепторов с секрецией гистамина. В настоящее время получены четкие доказательства того, что различные фосфолипидные метаболиты инозитола являются вторичными мессенджерами в процессе передачи сигнала. В первых исследованиях на тучных клетках, где проводилось измерение включений 32Р- или [3Н]-инозитола в фосфати- дилинозитол, фосфатидилхолин и др., было установлено, что стимуляция тучных клеток поперечным сшиванием Fc-e-рецепторов при

водит к распаду фосфатидилинозитола.

Кривые доза-эффект, а также временные характеристики процессов обмена фосфатидилинозитола и стимулированной секреции гистамина тесно коррелируют.

Благодаря этим исследованиям наши знания о метаболизме фосфоинозитида в клетках значительно расширились; схема метаболизма представлена на рис. 11. Фосфатидилинозитол является мембранным фосфолипидом, который под действием АТФ-зависимой специфической киназы превращается в 4-монофосфат и 4,5- дифосфат (ФИФ2). Стимуляция мембранного рецептора активирует фосфолипазу С, вероятно, через ГТФ-связывающий регуляторный белок. Фосфолипаза С превращает ФИФ2 в инозитол-1,4,5-трифосфат (ИФ3) и диацил- глицерол. ИФ3 быстро распадается, превращаясь в инозитол-1,4-дифосфат (ИФ2). Как показывают недавно полученные данные, в некоторых системах ИФ2 вызывает высвобождение кальция из внутриклеточных депо, а

диацилглицерол активирует фермент протеинкиназу С. Таким образом, инициированный стимуляцией рецепторов обмен фосфоинозитида приводит к повышению уровня внутриклеточного кальция и активации протеинкиназы С. В ряде клеток наблюдается синергизм кальциевого сигнала и активности протеинкиназы С при осуществлении специфического ответа клетки.

Что же служит доказательством участия этих механизмов в передаче сигнала от поперечно сшитых Fc-e-рецепторов к механизмам секреции гистамина? Недавние исследования, выполненные на клеточной линии крысиного базофильного лейкоза (RBL), подтвердили ранее полученные данные о стимуляции обмена фосфатидилинозитола при поперечном сшивании Fc-e-рецепторов, а также о пропорциональности скорости гидролиза инозитоло- вого фосфолипида количеству образовавшихся поперечных сшивок. Однако, помимо увеличения продукции ИФ2 и ИФ3, отмечается по-

вышенное образование других полифосфатов инозитола, включая ИФ4, и пока неясно, какие из них участвуют (если это имеет место) в передаче сигнала. Другой проблемой является кальциевая зависимость фосфоинозитидного обмена. Как указывалось в ранних исследованиях, обмен фосфатидилинозитола в тучных клетках, стимулированных поперечным сшиванием Fc-e-рецепторов, не зависит от внеклеточного кальция. Этот момент весьма важен, ибо если фосфат инозитола предположительно генерирует кальциевый сигнал (высвобождение кальция ИФ3 из внутриклеточных депо), то образование фосфата инозитола само по себе не должно зависеть от кальция. Однако недавние исследования на клетках RBL показали, что гидролиз фосфолипидов инозитола после стимуляции клеток в значительной степени зависит от кальция и лишь в определенных условиях является кальцийнезависи-мым процессом.

Стало быть, теперь не вполне ясно, участвуют ли фосфаты инозитола в формировании кальциевого сигнала в тучных клетках и базофилах. Неясно также, какая форма фосфата инозитола является активной молекулой, если данный механизм действительно работает. Требует своего объяснения и другой фактор-высокая степень зависимости секреции гистамина от внеклеточного кальция. Если, как отмечалось выше, источником увеличения [Са2 ];, активирующего клетки, служит внеклеточный кальций, то непонятно, каким образом фосфаты инозитола индуцируют вход внеклеточного кальция в клетку. В настоящее время единственно определенным действием ИФ3, как сейчас полагают, является высвобождение внутриклеточного кальция.

Не более ясна и роль протеинкиназы С, фермента, активируемого диацилглицеролом- продуктом распада ФИФ2. Диацилглицерол в качестве активатора протеинкиназы С может быть заменен форболовым эфиром 12-0-тет- радеканоилфорбол-13-ацетатом (ТФА). Сам по себе ТФА вызывает очень медленное выделение гистамина из тучных клеток и практически не влияет на гистаминовую секрецию RBL. Следовательно, только одна активация протеинкиназы С не является достаточным условием для запуска процесса секреции гистамина. Однако введение в клетку очень небольшого количества кальция (с ионофором А23187, не приводящим к секреции гистамина) совместно с активацией протеинкиназы С, индуцированной ТФА, приводит к синергизму стимулов и достаточно выраженной секреции гистамина. Синергизм наблюдается также между ТФА (активация киназы С) и поперечным сшиванием Fc-e-рецепторов, однако он имеет более сложный характер, поскольку он отмечается лишь при кратковременной экспозиции клеток с низкой концентрацией ТФА (3 нм). При более длительной экспозиции клеток с 30 нм ТФА сигнал, вызванный поперечным сшиванием рецепторов, подавляется. Это свидетельствует о том, что в подобных условиях ТФА подавляет кальциевый и, возможно, инозитолфосфатный сигналы. Возможна неоднозначная интерпретация результатов этих экспериментов: 1) протеинкиназа С способна как подавлять, так и стимулировать кальциевый сигнал; 2) ТФА может действовать посредством механизмов, отличных от активации киназы С.

Метилирование фосфолипидов

Помимо изменения обмена мембранного фосфатидилинозитола при стимуляции в результате поперечного сшивания Fc-e-рецепторов возможна инициация метилирования некоторых мембранных фосфатидов. Показано, что после образования поперечных сшивок между Fc-e- рецепторами мембранный фосфатидилсе-рин декарбоксилируется, превращаясь в фос- фатидилэтаноламин. Мембраны содержат два метилтрансферазных фермента, для которых кофактором является 8-аденозил-Ь-метионин. Одна из метилтрансфераз локализуется на внутренней поверхности мембранного бислоя, а вторая - на наружной. Первый фермент метилирует фосфатидилэтаноламин до фосфати- дил-1Ч-монометилэтаноламина, являющегося субстратом для второй метилтрансферазы, которая во внешнем слое мембраны превращает его в фосфатидилхолин (рис. 12). Фосфатидил- холин может служить субстратом для фосфолипазы А2, которая превращает его в лизо- фосфатидилхолин и арахидоновую кислоту. Реакции метилирования предшествуют секреции гистамина и по времени совпадают с входом кальция в тучные клетки. Кроме того, ингибиторы метилтрансфераз предупреждают секрецию гистамина и вход кальция в клетки, хотя кривые «доза-эффект» для этих ингибиторов не исключают возможности отсутствия связи между угнетением метилтрансфераз-ной активности, с одной стороны, и подавлением секреции гистамина и движения кальция-с другой. Основная трудность здесь за-

ключается в понимании того, каким образом данная система генерирует сигнал для клетки, поскольку все, казалось бы, свидетельствует в пользу образования фосфатидилхолина во внешней части мембраны и в то же время сам фосфолипид составляет значительную часть мембраны. Имеются указания на возможность увеличения подвижности мембраны, однако это не дает решения вопроса относительно механизма передачи сигнала.

ГТФ-связывающие белки

Как отмечалось выше, для превращения ФИФ2 в ИФ3 необходима активация фосфолипазы С, которая возможна при поперечном сшивании Fc-e-рецепторов через ГТФ-связывающий белок по механизму, аналогичному активации аденилатциклазы при связывании Р-агониста

с (3-адренорецептором. Показано, что коклюшный токсин, который тормозит активацию ферментов через ГТФ-связывающий белок, подавляет выделение гистамина из тучных клеток. Негидролизуемый аналог ГТФ, Gpp(NH)p, стимулирует выделение гистамина при его введении в проницаемые тучные клетки в присутствии кальция. Хотя ГТФ-регулятор- ный белок, участвующий в секреции гистамина, не был выделен, в пользу его существования свидетельствуют данные эксперимента на крысиных базофильных лейкоцитах. Свойства этого белка отличаются от свойств Ni и Ns ГТФ- регуляторных протеинов, участвующих в сопряжении тормозящих и стимулирующих рецепторов с аденилатциклазой в других системах. Недавно было показано, что белок G тучных клеток, участвующих в процессе экзо- цитоза (см. ниже), отличается от белка G, активирующего фосфолипазу С.

<< | >>
Источник: Коллектив авторов. Руководство по иммунофармакологии: Пер. с англ./Под ред. Р84 М.М. Дейла, Дж. К. Формена.-М.: Медицина,1998. 1998

Еще по теме Метаболизм фосфолипидов:

  1. Глава 10. МЕТАБОЛИЗМ
  2. Метаболизм лекарств в печени
  3. МЕТАБОЛИЗМ КЛЕТКИ И ВИТАМИНЫ
  4. МЕТАБОЛИЗМ
  5. Глава 1. ОБЩАЯ СТРУКТУРА МЕТАБОЛИЗМА КЛЕТКИ
  6. Пластическое звено метаболизма
  7. МЕТАБОЛИЗМ БИЛИРУБИНА
  8. ОБЩАЯ СТРУКТУРА МЕТАБОЛИЗМА КЛЕТКИ
  9. Средства, устраняющие продукты метаболизма клетки
  10. Энергетическое звено метаболизма
  11. 4. Метаболизм лекарственных веществ в организме