<<
>>

Молекулярные и генетические характеристики

Человеческий ИФН-а первоначально тщательно приготавливался из лейкоцитов, зараженных вирусом, клеток, сенсибилизированных буфером, или инфицированных лимфобласто- идных линий. Нередко препараты имели невысокое содержание ИФН и низкую специфическую активность; однако новая технология получения рекомбинантной ДНК оказала революционизирующее влияние на получение

ИФН, так что ИФН-а, а также ИФН других классов стали доступными в виде чистых препаратов, имеющих высокую специфическую активность и не загрязненных другими цитокинами.

Это достигается экстрагированием информационной РНК из индуцированных клеток и созданием кДНК с помощью обратной транскриптазы. ДНК-копия встраивается в бактериальные плазмиды с целью образования множественных кДНК, которые исследуются на способность к поддержанию продукции антивирусной активности в суперна-танте бесклеточных систем белкового синтеза. Позитивные бактериальные клоны могут быть пригодными для получения больших количеств чистого ИФН. Гены, кодирующие человеческие интерфероны а и B, располагаются на коротком плече 9-й хромосомы. Определены по крайней мере 13 ИФН-генов, они кодируют разные подтипы и неаллель-ны. Кроме того, существует 6 псевдогенов, для которых не найдено функциональных белков. Для ИФН-Р выявлен пока только один ген. Гены ИФН-а обладают примерно 90% гомологией нуклеотидной последовательности и необычны тем, что у них отсутствуют интроны.

Первичным продуктом трансляции информационной РНК ИФН-а является полипептид, содержащий 188-189 аминокислот, из которых первые 23 составляют гидрофобный сигнальный полипептид (обычное свойство секреторных белков), который отщепляется при транспорте из клетки. Зрелый ИФН-а, таким образом, состоит из 165-166 аминокислот, причем последние 10, вероятно, несущественны для биологической активности (рис. 122). Зрелый ИФН-а не гликозилирован.

Ген ИФН-Р также расположен на 9-й хромосоме и не содержит интронов. Большая структура ИФН-Р имеет сходство с ИФН-а. ИФН-Р представляет собой белок, содержащий 187 аминокислот с сигнальным пептидом (из 21 аминокислоты). ИФН-Р имеет единственно возможное место для N-гликозилирования; он более гидрофобен, чем ИФН-а. ИФН-а и ИФН-р обладают примерно равной 29% гомологией последовательностей, но она гораздо выше в двух высококонсервативных доменах между аминокислотами 28-40 и 120-150 (см. рис. 122).

Второй высококонсервативный домен может участвовать в связывании с клеточными рецепторами, поскольку он обладает некоторой гомологией с Р-субъединицей холерного токсина, который конкурирует с ИФН за место связывания на мембране клеток-мишеней.

Ген для ИФН-у расположен на 12-й хромосоме и в отличие от генов ИФН-а/Р имеет три интрона и очень большие фланкирующие области (ПО и 587 нуклеотидов в областях 5' и 3' соответственно). Активный белок представляет собой 166-аминокислотный полипептид с сигнальным пептидом, состоящим из 20 аминокислот. Зрелый белок содержит избыток основных аминокислотных остатков и лабилен к изменениям температуры и в кислой среде. Существуют две формы человеческого ИФН-у: 20000 и 25000 дальтон; это белки, образующиеся при посттрансляционном процессинге первичного продукта (17 000 дальтон), что связано с разной степенью гликозилирования двух потенциальных мест.

Технология рекомбинантной ДНК также использовалась при изучении природы активных центров молекул интерферонов. Например, синтетические гены ИФН были созданы для образования ИНФ с простыми аминокислотными заменами, которые помогли найти места, необходимые для активности, такие как уникальный триптофановый и метиониновый остатки в 48-й позиции ИФН-у. Гликозили- рование интерферонов, вероятно, не является необходимым (хотя оно может определять тканевую специфичность), так как ни природный ИФН-а, ни генно-инженерные ИФН (всех трех классов), образуемые бактериями, не гликозилируются, сохраняя при этом, однако, свою биологическую активность.

В настоящее время нет сомнений в том, что ИФН взаимодействуют с рецепторами клеточной поверхности, что является первым необходимым этапом в развитии антивирусной защиты и экспрессии какой-либо другой активности, индуцируемой ИФН. (В этом отношении ИФН весьма напоминают гормоны). Ген, кодирующий рецептор для ИФН-а/р, располагается на длинном плече 21-й хромосомы. В течение ряда лет было известно, что клетки с трисомией 21-й хромосомы in vitro связывают большее количество ИФН (этот факт был использован при разработке высокочувствительного метода определения ИФН). ИФН-а/Р, вероятно, используют один и тот же клеточный рецептор в отличие от ИФН-у, располагающего уникальным рецептором. Как правило, при активации ИФН-генов активируются и гены для их рецепторов, хотя обработка клеток ИФН-у может вызвать обратную регуляцию рецепторов для ИФН-а/р. Поверх-

Рис. 122. Две возможные структуры интерферона (а и б).

Четыре а-петли (цилиндры) собраны в правосторонний пучок. Концы петель пронумерованы согласно аминокислотной последовательности ИФН-Р; указаны дисульфидные мостики ИФН-а, и возможные области Р-цепи (верхние стрелки). Черные короткие стрелки указывают возможные положения N- проксимальных (А) и С-проксимальных (С) идиотопов ИФН [Weissmann et al.~ Phil. Trans. R. Soc. Lond., 1982, В 299, 7-28; с разрешения автора и Королевского Общества].

ность фибробластов человека содержит примерно 2400 высокоаффинных мест связывания для ИФН-у и гораздо меньше-для ИФН-а/Р (< 1000). Для рецепторов ИФН-у определена константа связывания, равная 1-5-Ю-8 М.

<< | >>
Источник: Коллектив авторов. Руководство по иммунофармакологии: Пер. с англ./Под ред. Р84 М.М. Дейла, Дж. К. Формена.-М.: Медицина,1998. 1998

Еще по теме Молекулярные и генетические характеристики:

  1. Молекулярные характеристики
  2. Генетическая детерминированность основных психофизиологических характеристик
  3. Молекулярная биология индукции
  4. Молекулярная генетика артериальной гипертензии при сахарном диабете
  5. МОЛЕКУЛЯРНО-БИОЛОГИЧЕСКИЕ МЕТОДЫ ДИАГНОСТИКИ
  6. Молекулярная генетика артериальной гипертензии при сахарном диабете
  7. КЛЕТОЧНЫЕ И МОЛЕКУЛЯРНЫЕ ОСНОВЫ ИММУННОГО ОТВЕТА
  8. ill. ГЕНЕТИЧЕСКИЕ АСПЕКТЫ
  9. МЕДИКО-ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ
  10. Торшин И. Ю., Громова О. А.. Экспертный анализ данных в молекулярной фармаколо- Т61 гии. - М.: МЦНМО, 2012- 747 с., 2012
  11. РЕФЕРАТ. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ СЕКРЕЦИИ ИНСУЛИНА И ЕГО ДЕЙСТВИЯ НА КЛЕТКИ2018, 2018
  12. ГЕНЕТИЧЕСКАЯ ОРГАНИЗАЦИЯ И ТКАНЕВАЯ СПЕЦИФИЧНОСТЬ UGT
  13. НЕСКОЛЬКО СЛОВ О ГЕНЕТИЧЕСКИХ РАЗЛИЧИЯХ
  14. МОЛЕКУЛЯРНЫЕ ИНТЕРПРЕТАЦИИ ФАРМАКОЛОГИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ В РАМКАХ ПРИНЦИПОВ ФИЗИЧЕСКОЙ ХИМИИ